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1 Methodological Details

1.1 Discretizing the Kernel Function

We obtain the discrete kernel function by discretizing an underlying continuous kernel function. For
each component of the vector z̃t∗ = (zt∗−l1 , . . . , zt∗−lM , zt∗+h)′, we associate lower and upper bounds
of integration azj and bzj with each value in the domain of that random variable. The value of the
kernel function is obtained by integrating over the hyper-rectangle specified by these bounds:

K inc
disc(z̃t∗ , z̃t;B

h) =

∫ bzt∗−l1

azt∗−l1

· · ·
∫ bzt∗+h

azt∗+h

K inc
cont(z̃t∗ , z̃t;B

h) dzt∗−l1 · · · dzt∗+h.

In our application, the possible values of the random variables are non-negative integer case counts.
In order to facilitate use of the log-normal kernel, we add 0.5 to the observed case counts; the corre-
sponding integration bounds are the non-negative integers as illustrated in Supplemental Figure 1.

1.2 Alternative Copula Specifications

In Section 2.2 of the main manuscript, we introduced the use of copulas to model dependence
in incidence values across different weeks in the season. In our model, we have used a separate
copula function for each trajectory length (where the length of the trajectory is equal to the number
of weeks remaining in the season). This specification allows the amount of dependence among
future incidence values to vary with the time in the season at which we are making the predictions.
Alternative formulations are also possible: for instance, we could fit a single copula function for the
longest trajectory required, and use the relevant subset of those dependence parameters to make
predictions at shorter trajectory lengths. We have not tried this alternative formulation, but we
have observed that in our formulation the estimated dependence parameters vary strongly with the
trajectory length. For instance, in the application to influenza using the KCDE specification with
a fully parameterized bandwidth and a periodic kernel component the estimate of ξH1 is 0.909 for a
trajectory of length H = 17, but it is 0.769 for a trajectory of length H = 31. Thus, the amount
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of dependence between incidence values d = 1 week apart is much lower for H = 31 than it is for
H = 17. This level of variation is fairly consistent across all values of H and d, and the standard
errors of these estimates are in the range of about 0.02 to 0.06, suggesting that these differences
are statistically significant (though we have not conducted a formal hypothesis test of this). This
indicates that a simpler model with the same dependence parameters used at all points in the season
would not adequately capture variation in dependence levels over the course of the season.

1.3 Parameter Estimation

We follow a two-stage strategy for parameter estimation [1]:

1. Estimate the parameters for marginal predictive distributions using the cross-validation pro-
cedure described in Section 2.1 of the main text.

2. Estimate the copula parameters, holding the parameters for the marginal predictive distribu-
tions fixed:

(a) Form vectors of “pseudo-observations” by passing observed incidence trajectories from
previous seasons through the marginal predictive c.d.f.s obtained in step 1:

(uk,1, . . . , uk,H) =

{F 1(zt∗k+1 | t∗k, zt∗k−l1 , . . . , zt∗k−lM ; θθθ1), . . . , FH(zt∗k+H | t
∗
k, zt∗k−l1 , . . . , zt∗k−lM ; θθθH)}

We form one such vector of pseudo-observations for each season in the training data; in
the notation here, these seasons are indexed by k. The relevant time points t∗k are the
times in those previous seasons falling H time steps before the end of the season.

(b) Estimate the copula parameters ξξξH by maximizing the likelihood of the pseudo-observations.

2 Simulation Study Details

2.1 Simulation Distributions

In the simulation study, we simulate data from a discretized multivariate normal distribution. The
method for discretizing the underlying multivariate normal is the same as we described above for
descritizing the kernel function. The normal distribution has mean 0

¯
and covariance matrix with

1 on the diagonal and 0.9 off of the diagonal. Alternatively, this distribution can be characterized
as the sum of the column vectors (U,U)′ and V = (V1, V2)′, where U ∼ N(0, 0.9) is a random
offset generated independently from V ∼ N(0

¯
, 0.1I) (where I denotes the 2 × 2 identity matrix).

This multivariate normal distribution was used in one of the simulation studies conducted by Duong
and Hazelton [2] demonstrating that a fully parameterized bandwidth matrix could yield improved
density estimates for joint density estimation with continuous distributions. We discretize this
distribution at the half-integers as illustrated in panel (a) of Supplemental Figure 2.

Panel (b) of Supplemental Figure 2 gives a motivating example for using this particular distri-
bution in the simulation study: prediction of incidence at a prediction horizon of one week. In the
simplest formulation this task omitting the periodic kernel component and predicting using only the
most recent observation, our goal is to estimate the conditional distribution of incidence at time
t + 1 given incidence at time t. A key feature of the observed disease incidence in our data sets is
the high autocorrelation of the time series, which appears as a linear trend in the scatter plot of
incidence at adjacent time points. The simulation study examines how the bandwidth matrix pa-
rameterization relates to performance of KCDE in estimating conditional densities in the presence
of such correlation between the variables being conditioned on and the variables whose density is
being estimated.
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2.2 Hellinger Distance

The Hellinger distance of the estimated density f̂(x) from the true density f(x) is given by

Hellinger(f, f̂) =

[
1−

∫ {
f(x)f̂(x)

} 1
2

dx

] 1
2

In the simulation study, we measure the quality of a conditional density estimate by integrating
the Hellinger distance over the range of the conditioning variables, weighting according to the density
of those conditioning variables:

Score{f̂(x1 | x2, . . . , xD)}

=

∫
· · ·
∫ [

Hellinger{f(x1 | x2, . . . , xD), f̂(x1 | x2, . . . , xD)}
]
f(x2, . . . , xD)dx2 · · · dxD

=

∫
· · ·
∫ [

1−
∫ {

f(x1 | x2, . . . , xD)f̂(x1 | x2, . . . , xD)
} 1

2

dx1

] 1
2

f(x2, . . . , xD)dx2 · · · dxD

=

∫
· · ·
∫ 1−

∫ {
f̂(x1 | x2, . . . , xD)

f(x1 | x2, . . . , xD)

} 1
2

f(x1 | x2, . . . , xD) dx1


1
2

f(x2, . . . , xD)dx2 · · · dxD

(1)

We perform Monte Carlo integration to evaluate the integrals in Equation (1) by sampling
observations (xi,1, . . . , xi,D) from the joint distribution of X.

3 Application Details

3.1 Prediction Targets

As we discussed in the main article, there are three prediction targets for each data set:

1. For each week in the test data, we obtain a predictive distribution for the incidence measure
in that week at each prediction horizon from 1 to 52 weeks ahead.

2. In each week of the test data set, we make predictions for the timing of the peak week of the
corresponding season.

3. In each week of the test data set we predict incidence in the peak week for the correspond-
ing season. Following the precedent set in the competitions, we make predictions for binned
incidence in the peak week.

These prediction targets are illustrated in Supplemental Figure 3.

3.2 HHH4 Model

The HHH4 model for a single infectious disease incidence time series specifies that observed incidence
Zt follows either a Poisson or a Negative Binomial distribution with mean parameterized as

E[Zt] = λtZt−l + νt, where

log(λt) = α(λ) +

S(λ)∑
s−1

{
γ(λ)s sin(ωwt) + δ(λ)s cos(ωst)

}

log(νt) = α(ν) +

S(ν)∑
s−1

{
γ(ν)s sin(ωwt) + δ(ν)s cos(ωst)

}
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In these equations, l is a lag to use in the autoregressive term and S(λ) and S(ν) specify the
number of sinusoidal terms used to capture seasonality. We used Aikake’s Information Criterion
(CITE) to perform model selection. We considered all possible model specifications that could be
obtained by varying the following four factors:

1. Parametric family: {Poisson,Negative Binomial}

2. l ∈ {1, 2, 3}

3. S(λ) ∈ {0, 1, 2, 3}

4. S(ν) ∈ {0, 1, 2, 3}

This is similar to the approach taken by Held and Paul [3]. The selected model (with lowest AIC
among the candidate specifications considered) had a Negative Binomial family, l = 1, S(λ) = 2,
and S(ν) = 1.

The surveillance package provides functionality to compute one-step-ahead predictive distribu-
tions and to iteratively sample trajectories over multiple time steps [4], but it does not provide
functionality to compute the predictive distributions at horizons more than one step ahead. For this
article, we used an importance sampling estimate of the predictive density at horizons h ≥ 2:

P (Zt+h = zt+h | zt) =

∫∫
P (Zt+h = zt+h, . . . , Zt+1 = zt+1 | zt) dzt+1 · · · dzt+h−1

≈ 1

J

J∑
j=1

P (Zt+h = zt+h | z(j)t+h−1, . . . , z
(j)
t+1, zt), where

(z
(j)
t+h−1, . . . , z

(j)
t+1), j = 1, . . . , J are sampled from the joint distribution of (Zt+h−1, . . . , Zt+1) | zt.

3.3 Predictive Distributions for Individual Weeks: Additional Results

Here we present some additional results for predicting incidence in individual weeks in the applica-
tions. Supplemental Figure ?? shows that including the periodic kernel in the KCDE specification
yielded consistent performance gains in the application to influenza. The performance gains in the
application to dengue fever were smaller, but average performance was still higher when the periodic
kernel was included. The figure also shows that the gains from using a fully parameterized band-
width instead of a diagonal bandwidth are negligible, though there is a small gain on average in the
application to influenza.

3.4 Predictive Distributions for Peak Week and Peak Incidence: Addi-
tional Results

Figure 6 in the main text shows log scores for prediction of incidence in the peak week. Supplemental
Figure ?? in this supplement shows the corresponding results for prediction of peak week timing.
As with predictions of peak incidence, there is no clear evidence that KCDE either outperforms or
underperforms relative to the SARIMA model. The log scores give us information about the values
that the predictive distributions take at a single value: the eventual realized outcome. Supplemental
Figures ?? through ?? give more information, about the predictive distributions for peak week height
and timing obtained from SARIMA and the Periodic, Full Bandwidth KCDE specification.

As we discussed in the main text, the predictive distributions for peak week timing and incidence
are obtained by performing an appropriate Monte Carlo integral of the joint distribution for incidence
in all remaining weeks in the season. In more plain language, we sample incidence trajectories from
the joint predictive distribution of incidence in all remaining weeks and calculate the proportion of
those sampled trajectories where the peak fell in each incidence bin or at each week of the season.
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Supplemental Figure 7 illustrates this with the Periodic, Full Bandwidth KCDE specification and
the SARIMA model. For reference, we have also included all observed trajectories for the seasons
in the training and test data sets and trajectories sampled from the predictive distribution that
would be obtained by combining the KCDE predictions at different horizons using an independence
assumption instead of a copula. We can see that the effect of the copula is to induce correlation in
the incidence across different weeks. The trajectories obtained with the copula are much smoother
than the trajectories obtained with an independence assumption.
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Supplemental Figure 1: Illustrations of K inc
cont and K inc

disc in the bivariate case. Solid lines show
contours of the continuous kernel function. Grey dots indicate the value of the discrete kernel
function. The value of the discrete kernel is obtained by integrating the continuous kernel over
regions as illustrated by the dashed lines in panels (a) and (b). In all panels the kernel function is
centered at (2.5, 2.5). Panels (a) and (b) show the same kernel function with different axis scales; the

bandwidth matrix is

[
0.2 0
0 0.2

]
. Panels (c) and (d) show the same kernel function, with bandwidth

matrix

[
0.2 0.15
0.15 0.2

]
.
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Supplemental Figure 2: Panel (a) shows the distribution that we simulate data from in the simulation
study. Panel (b) shows an example motivating the choice of distribution for the simulation study:
reported dengue cases at time t+ 1 vs. at time t.
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Summary of Log Score Differences
Disease KCDE Specification Baseline Subset Min Q1 Q2 Mean Q3 Max
Dengue Null HHH4 All Weeks -1.60 -0.51 -0.26 0.22 0.39 8.89

Low Incidence -1.32 -0.51 -0.29 0.05 0.08 5.05
High Incidence -1.60 -0.23 0.49 0.81 1.45 6.29

Dengue Null SARIMA All Weeks -2.46 -0.37 -0.03 0.31 0.57 6.47
Low Incidence -2.46 -0.35 -0.07 0.17 0.37 5.39
High Incidence -1.57 -0.35 0.94 1.15 2.23 5.92

Dengue Full Bandwidth HHH4 All Weeks -1.57 -0.50 -0.24 0.20 0.39 8.29
Low Incidence -1.50 -0.50 -0.28 0.05 0.10 4.91
High Incidence -1.57 -0.30 0.42 0.71 1.32 6.11

Dengue Full Bandwidth SARIMA All Weeks -2.64 -0.34 -0.01 0.29 0.56 6.22
Low Incidence -2.64 -0.31 -0.04 0.18 0.37 5.04
High Incidence -2.02 -0.33 0.66 1.04 2.13 5.80

Dengue Periodic HHH4 All Weeks -2.47 -0.24 -0.02 0.35 0.49 7.21
Low Incidence -2.47 -0.27 -0.09 0.14 0.18 4.19
High Incidence -1.40 0.27 0.90 1.21 1.98 6.05

Dengue Periodic SARIMA All Weeks -2.42 -0.15 0.13 0.43 0.66 6.10
Low Incidence -2.42 -0.14 0.09 0.26 0.47 4.30
High Incidence -1.72 0.07 1.48 1.54 2.70 6.10

Dengue Periodic, Full Bandwidth HHH4 All Weeks -2.09 -0.25 0.00 0.35 0.57 7.23
Low Incidence -2.09 -0.30 -0.09 0.13 0.22 3.98
High Incidence -1.28 0.41 0.94 1.26 1.95 5.68

Dengue Periodic, Full Bandwidth SARIMA All Weeks -2.16 -0.13 0.16 0.44 0.66 6.12
Low Incidence -2.16 -0.14 0.11 0.25 0.47 4.15
High Incidence -1.60 0.25 1.48 1.59 2.72 6.12

Influenza Null SARIMA All Weeks -2.26 -0.62 -0.39 -0.37 -0.16 3.56
Low Incidence -1.60 -0.59 -0.35 -0.34 -0.14 3.56
High Incidence -2.26 -1.01 -0.66 -0.54 -0.28 3.09

Influenza Full Bandwidth SARIMA All Weeks -2.83 -0.56 -0.33 -0.33 -0.14 3.79
Low Incidence -1.43 -0.46 -0.27 -0.26 -0.10 3.79
High Incidence -2.83 -1.11 -0.79 -0.68 -0.36 2.89

Influenza Periodic SARIMA All Weeks -1.72 -0.21 -0.04 0.00 0.15 3.90
Low Incidence -1.68 -0.17 -0.01 0.03 0.17 3.90
High Incidence -1.72 -0.57 -0.10 -0.06 0.26 3.18

Influenza Periodic, Full Bandwidth SARIMA All Weeks -2.18 -0.20 0.00 0.02 0.19 4.07
Low Incidence -1.67 -0.13 0.04 0.07 0.21 4.07
High Incidence -2.18 -0.58 -0.16 -0.10 0.24 3.11

Supplemental Table 1: Summaries of model performance relative to the baseline models for predic-
tions of incidence in individual weeks. Each row summarizes the log score differences for predictions
of incidence made by one of the KCDE specifications and one of the baseline models. The first row
for each model pair summarizes results for all combinations of target week in the test period and
prediction horizon; the “Low Incidence” rows summarize results for predictions in weeks where the
observed incidence in the target week was less than one third of the maximum weekly incidence in
the test period; the “High Incidence” rows summarize results for weeks where the observed incidence
was at least two thirds of the maximum weekly incidence in the test period.
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Log Scores for Predictive Distributions for Peak Week Incidence
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Supplemental Figure 5: Log scores for predictions of peak week incidence by predictive model and
analysis time. The vertical line is placed at the peak week for each season. The log score for “Equal
Bin Probabilities” is obtained by assigning equal probability that the peak incidence will be in each
of the specified incidence bins. There are 11 incidence bins for dengue and 27 bins for influenza.
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represents one predictive distribution. The horizontal dashed line is at the observed peak incidence
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Observed and Simulated Trajectories of Influenza-like Illness Incidence
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Supplemental Figure 7: Incidence trajectories for the influenza data set. The top panel displays
the observed trajectories for all seasons in the data set, with the 2012/2013 season in darker color.
The lower three panels display the observed trajectory from the 2012/2013 season and five simulated
incidence trajectories from each of three models: the KCDE model with copula as implemented in our
applications; a KCDE model using an independence assumption across prediction horizons; and the
SARIMA model. The simulated trajectories are generated from the predictive distribution obtained
10 weeks into the 2012/2013 season. The red points indicate the peak week in each simulated
trajectory.
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